A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver

نویسندگان

  • Chuang Qian
  • Hui Liu
  • Ming Zhang
  • Bao Shu
  • Longwei Xu
  • Rufei Zhang
چکیده

As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver

Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this pap...

متن کامل

GPS Cycle Slip Detection Considering Satellite Geometry Based on TDCP/INS Integrated Navigation

This paper presents a means of carrier phase cycle slip detection for an inertial-aided global positioning system (GPS), which is based on consideration of the satellite geometry. An integrated navigation solution incorporating a tightly coupled time differenced carrier phase (TDCP) and inertial navigation system (INS) is used to detect cycle slips. Cycle-slips are detected by comparing the sat...

متن کامل

A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals

Fast and reliable ambiguity resolution (AR) has been a continuing challenge for real-time precise positioning based on dual-frequency Global Navigation Satellite Systems (GNSS) carrier phase observation. New GNSS systems (i.e., GPS modernization, BDS (BeiDou Navigation Satellite System), GLONASS (Global Navigation Satellite System), and Galileo) will provide multiple-frequency signals. The GNSS...

متن کامل

Overcoming the Challenges of BeiDou Receiver Implementation

Global Navigation Satellite System (GNSS)-based positioning is experiencing rapid changes. The existing GPS and the GLONASS systems are being modernized to better serve the current challenging applications under harsh signal conditions. These modernizations include increasing the number of transmission frequencies and changes to the signal components. In addition, the Chinese BeiDou Navigation ...

متن کامل

Combining GPS, BeiDou, and Galileo Satellite Systems for Time and Frequency Transfer Based on Carrier Phase Observations

The carrier-phase (CP) technique based on the Global Navigation Satellite System (GNSS) has proved to be a useful spatial tool for remote and precise time transfer. In order to improve the robustness and stability of the time transfer solution for a time link, a new CP approach based on a combination of GPS, BeiDou (BDS), and Galileo satellite systems is proposed in this study. The mathematical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016